A Natural Term Language

Jan van Eijck

This paper proposes a natural term language, investigates some of its prop-
erties, and discusses some of the advantages of natural term logic (NTL) as
a medium for natural language semantics over its rivals and ancestors.

1 INTRODUCTION

In 1989 Cor Baayen was the prime mover behind the decision to start long-term
work on the logic of natural language at CWI. Work in this area had found
an occasional refuge at the centre before, witness Janssen [13], but the seed of
a full scale research group in ‘Logic and Language’ was sown in the Autumn
of 1989. Right now, five years later, the group consists of five researchers (six
if we count a distinguished longtime guest), all but one supported by external
funds. Fortunately for the rest of CWI we anticipate that this rate of growth
will not be sustained in the future.

The main focus of current CWI research in ‘Logic and Language’ is on con-
nections between programming language semantics and natural language se-
mantics and on the design and analysis of suitable representation languages for
natural language meaning. The connection with programming is explained by
the fact that natural language representation should account for incrementality
of processing, i.e., for the fact that we tend to understand each natural language
utterance in the context of our understanding of what we have heard before.
The semantics of a natural language text T consisting of 713 followed by 75 will
specify that T} sets up a context which is passed on as input to 75, and that
the meaning of T' can be described as an increment of the meaning of 7T7. T'his
has a straightforward parallel in the analysis of computation: the semantics ot
a computer program P consisting of two parts P; and FP,, in that order, will
specify that the result of the computation to which P; refers is passed on as
input to P,, and that the output of P for this input is the final output ot P.

The paper starts with listing some desiderata for natural language represen-
tation, and then makes a new proposal for an incremental language for meaning
representation.
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2 WHAT MAKES AN NL REPRESENTATION LANGUAGE ‘NATURAL’?

If we assume that the meaning of (descriptive uses of) language should re-
veal itself in the conclusions we can draw from the truth of natural language
utterances, the following requirement is possibly the most important:

Suitability of Representation for Reasoning The representation language
should come with a sound and complete calculus for reasoning, and prefer-

ably with decidable and efficient sound reasoning systems for usetful frag-
ments of it.

First order logic meets this requirement quite well, as we know. More esoteric
higher order representation languages such as Montague’s [18]| Intensional Logic
and its derivatives score lower in this dimension, as it is not always obvious
how such logics should be axiomatized in the first place.

Another natural requirement on NL representation is the following:

Structural Similarity of Representation The structure ot the logical rep-

resentation language should bear a reasonable amount of similarity to
that of the ‘source’ natural language.

At first sight, first order predicate logic does not meet this requirement at
all. Consider (1), with its first order representation (2) (disregarding tense for
simplicity). In the logical translation the subject-predicate structure of the
natural language source seems to have got lost.

1 A man walked in.
2 dJx(Mz ANWzx).

But here the appearance of the representation is misleading. If one thinks of
the representation as the result of combining, by functional application, the
meaning of the subject, AP-dz(Mx A Px), with that of the predicate, Ay - Wy,
then the structure of the source text reveals itself in the meaning representation
of (1) before lambda reduction:

3 (AP -3Jx(Mx A Px))(\y - Wy).

Still, the end result (2) of normalizing (3) does not have the same subject—
predicate structure as the original. A representation where noun phrases reveal
themselves in normal form as terms would satisty the requirement better.

In the representation of the meaning of a very simple natural language ex-
ample like (4), an extension of (1), we want to capture the fact that the first
sentence of the example makes an indefinite reterence to a man, while the
second sentence picks up the reference to that same individual.

4 A man walked in. He looked happy.

The reason why ordinary first order predicate logic is letting us down here 1s
that we also want our representation language to satisty the following principle
of incremental representation (already hinted at in the introduction above):
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Incrementality of Representation The representation of a text 7' consist-

ing of a subtext T} followed by a subtext 75 should be an increment of
the representation of 7j.

This principle is closely connected to, although not identical with, the principle
of compositional interpretation which is the main preoccupation of Janssen’s
[13] investigations in Montague grammar.

In ordinary predicate logic, the natural representation of the first sentence of
(4) is (2). This is not a suitable basis to construct a representation of the whole
text (4). A natural representation of the pronoun he would use the variable
z, but this choice runs into the problem that the scope of dx in (2) has been
closed oft.

The theory of discourse representation proposed in Kamp [14] tried to rem-
edy this problem by assuming that every indefinite description gives rise to a
so-called discourse marker, which can be picked up later on by an anaphoric
link (anaphora is the standard linguistic name for the connection between the
pronoun he and its antecedent a man in example (4)). Discourse representa-
tions d la Kamp essentially consist of sets or lists of discourse markers followed

by lists of conditions. A discourse representation for the first sentence of (4) is
given in (5)

5 {z},{Mzxz,Wx}.

In an analysis @ la Kamp, the representation for the second sentence of the

example can introduce a new marker y for he, and specify that the markers are
to be linked:

6 {v},{y = r, Hy}.

The representation of the complete example text (4) is the result of an obvious
process of ‘merging’ the two representations:

7 {z,y},{Mx,Wz,y =z, Hy}.

Later on, Groenendijk and Stokhof [8] observed that the essence of Kamp’s
proposal is already captured by a very simple modification of ordinary predicate
logic. Replace Tarski’s truth definition for first order logic by a dynamic variant
which interprets a first order formula as a two-place relation on the set of
variable assignments. The meaning of ¢ is then given as s|p|s’, where s denotes
the input assignment and s’ the output assignment. All semantic clauses are
tests, in the sense of imperative programming (where a test which gets memory
state s as input indicates success by returning s as output and failure by giving
no output at all), with the exception of 3z, which has the clause s[3z]s’ iff s’ =
s(xz|d), for some arbitrary d in the domain of the model under consideration.
If the predicate logical meaning of the first part of (1) is read dynamically in
the manner indicated, and the pronoun in the second part of (1) is translated
with the same variable, then in the end result this ‘dangling’ variable turns out

to be bound after all, due to the continuing dynamic effect of the ‘existential
switch’:
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8 Jx(Mx AWzx)A Hzx.

It is clear that the requirement of incremental representation leads in a nat-
ural way to a representation language with a dynamic semantics, and we can
expect such representation languages to be similar to programming languages
In 1nteresting ways. For instance, it turned out that the dynamic version of
predicate logic can be analysed with the standard tools from the study of im-
perative programming, such as Hoare logic (Van Eijck and De Vries [4]). Also,
it became clear that dynamic predicate logic and its derivatives suffer from the
problem of destructive assignment (see Dekker [1], Vermeulen [24] and Visser
[25] for discussion and for possible remedies): because Jdx has been effectively
replaced by the assignment statement x :=7, an existential quantification de-
stroys the old value of its variable, with the result that anaphoric reference to
that value by means of the variable (or a pronoun which has that variable as
its translation) becomes impossible. The present proposal adds one more item
to the long list of possible solutions for this problem.

3 THE BAsic IDEA

The basic idea of this paper is to design a language with complex ‘indefinite’
terms, with a dynamic semantics based on term valuations rather than variable
assignments. This representation language is structurally more similar to natu-
ral language than languages which adopt the term structure of predicate logic,
it caters for the needs of incremental representation by its dynamic nature,
and it also looks like a promising tool for reasoning, due to its link to Hilbert’s
epsilon calculus [9]. An earlier application of epsilon logic to the concerns of
natural language representation is Meyer Viol [16].

The Natural Term Logic (NTL) to be defined in the next section is intended
to achieve several goals at once:

e to give an account of the dynamics of left to right processing by means of
a relational semantics (an idea from dynamic predicate logic (8], update
logic [23], and similar proposals)

e to use intensional choice functions from epsilon logic [9] and instantial
logic [6, 17| for the representation of indefinites,

e to account for the existential and universal quantifier in term of choices
(friendly for existentials, unfriendly for universals), thus incorporating a
key idea from Game Theoretical Semantics [11],

e to link pronouns to descriptions of their antecedents (the key idea of the
so-called e-type analysis of pronouns proposed by Evans [5]),

e to treat universal and existential NPs as terms (one half of this idea
incorporated in file change semantics and DRT; the full idea plays a
role in traditional syllogistics and natural logic (Purdy [19], Sanchez [21],
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Sommers [22]) and was all but killed off by Frege’s Begriffsschrift analysis
of quantification [7]).

4 SEMANTICS OF NATURAL TERM LOGIC

We start with the non-logical vocabulary of a predicate logical language L.
This consists of a set

C= {CO':CI:CQ') . }

of names (or individual constants), for each n > 0 a set
P* ={P}, P, Py, ...}
of n-place predicate constants and for each n > 0 a set

= {0, 2 f3s- )

of n-place function constants.

[t is also useful to have L for absurdity, = for identity, and ~ for predicate
negation. The further logical vocabulary we add to this consists of parentheses,
the € term operator (borrowed from Hilbert and Bernays [9]), the colon :, an
infinitely denumerable set V of individual variables, the sequential composition
connective ; and the connective = for dynamic implication.

Terms and formulas are defined by mutual recursion, as follows (assume
ce C,veV, fef™ PePm):

terms ta=c|v| ft1---tn | (ev: ).

formulas ¢ = L | Pty -ty | Pt1---tn | t1 = t2 | (p1:02) | (o1 = ¥2).
The translation in this language of Example (4) becomes:

9 W(ex: Mzx); H(ex : Mx).

Note that in this translation the reference to the previously mentioned individ-
ual a man gets picked up by just repeating the term which was used to refer
to that individual in the first place: the translation of he is the same as that
of its antecedent.

An occurrence of v is bound in ¢ if v occurs inside a subformula 7 of the '
form (ev : 1), otherwise it is free in ¢. I will write ¢(v1,...,v,) to indicate that
the free variables of ¢ are among v1,...,v,. Just as in standard predicate logic
one has to take some care with substitution. If one wants to substitute ¢ for
free occurrences of v in ¢, one should check that t is free for v in ¢, 1.e., that no
free variable inside t is in danger of becoming bound in the result. Substituting
(ex : Pxy) for z in R(ey : Sxy)x, would run into this problem, for instance.
The problem can always be remedied by switching to an alphabetic variant.
In the example case, the result would be R(ez : S(ex : Pzy)z)(ex : Pxy).
I will use (t/v) for the result of substituting ¢ for all free occurrences of v
in ¢, with a switch to an alphabetic variant if the need arises. The result
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of simultaneous substitution of ¢;,...,¢, for free occurrences of vi,...,,Un,
respectively, in ¢, with renaming of bound variables as the need arises, will be
written as @(t1/vi,...,tn/vn).

Let M = (dom(M),int(M)) be a first order model for the vocabulary of L.

I will use c™, fM  PM as shorthand for int(M)(c), int(M)(f) and int(M)(P),
respectively.

Let A be the set of variable assignments for L in M, i.e., let A be the set

of functions dom(M )" . We will use a,a’ for members of A, and a(v|d) for the
assignment a’ with a’(t) =t for ¢t # v and a’(¢t) = d for t = v.
Let T be the set of terms of L. We consider the set of partial functions

dom(M)A*T]

as total functions in

B = (dom(M) U {1})***.
For TV C T and s € B, let s [ T' be the function s’ € B given by:

s'(a,t) = s(a,t) if t € T', and s'(a,t) =7 otherwise.

Define dom(s) as:

{{a,t) € AXT|s(a,t) #T}.
The relation < on B is defined as s < s’ iff s’ [ dom(s) = s | dom(s).

The set S C B of states for L in M is the set of those s € B satistying the
following:

e s(a,v) = a(v),

e s(a,c) =cM,

" fM(s(a,ty),...,s(a,ty))
o s(a, fty---t,) = if s(a,t1) #T,...,s(a,t
T otherwise.

o y_ ) @ forsomede[o]i, if[e]5, # 0,
* s(a,ev:ip) = { T otherwise.

TL) #T‘J

where [¢]} , is
{d € dom(M) | s, a(v|d) (]},

with s, a(v|d)[p] given by the following clauses (where we assume s,s’,s" € S
and a € A):

s, aly] iff 3s’ with s < ¢’ and s, alp|s’,
s,alLl]s’ iff never,
Saa[Ptl”'tn]S, iff s < Slasf(aatl) #Ta"'vsl(a&tn) %Ta
(s'(a,t1),...,s (a,tn)) € PM,
s,a[Pty---t,]s’ iff s<s', s (a,t1) #T,...,5(a,tn) #7,
(s'(a,t1),...,58 (a,tn)) & PM,
s,alt; = ta]s’ iff s<s’,s'(a,t1) #T,5'(a,t2) #7T, s'(a,t1) = s'(a,t2),
s, alp1; w28’ iff ds” with s,alp1]s” and s”, alpa]s’,
s,alpr = @o]s’  iff s= s and Vs" with s,alp1]s” it holds that s”, a[p2].
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5 ADEQUACY OF THE SEMANTIC DEFINITION

Note that the definition of the state set S for L in M is phrased in terms of S

itself, a potentially dangerous situation. The next proposition shows that for
every M for L, the set of states for L in M is non-empty.

PROPOSITION 1 If S is the set of states for L in M, then S # 0.

Proof: The proof uses a variation on a standard Skolem expansion argument
(see e.g. Hodges [12]).

Start out with the following language Lg:

terms t:=c|v | ft1---tn.

formulas (P::m—l—lptl”'tnIptl”'tnltl = 12 l (9913902) | (901 :?902)'

Let Ty be the set of terms of Ly. Surely, states for Lo exist, for a state for Ly

is just a mapping from assignments to classical first order term valuations. Let

So be the set of states for Ly. Note that [¢]} , is well-defined for ¢ € Lo.
Next, expand the language in layers. Assume T}, the set of terms for layer

k, and L, the set of formulas for layer k, are given. Then Tji; and Lg4, are
given by the following clauses:

terms t=c|v| ft1---t, | (ev:p) with p € Ly,

formulas ¢ ::= L | Pt;---t, | Pty -tn | t1 = t2 | (p1;92) | (91 = ¥2)
with t &€ Tk—l—l-

We may assume that Sy, the set of states for Ly, is non-empty. Also, we may
assume that [¢]% , is well-defined for ¢ € L, s € Sk.

Take some member s, € Si and use it to construct a member s of Sk as
follows.

e if t € T}, then s(a,t) := sk(a,t),

o ift € Ti11 — Tk, then t has the form (ev : ), with ¢ € L, and we set

. [ d forsomed € [o]{, o if [©]f, o # 0
s(a, ev : ) := { T  otherwise.

Obviously, this can always be done, so we have shown that Si4+1 # 0, and
moroever, that every s, € S can be extended to an sg4+1 € Sk41- Also, if
s € Sk+1, ]y will be well-defined for ¢ € Lg41.

The full language L is | Jr—, Lk, the full set of terms T is | Jz_, Tx- The set
of states S for L in M is given by:

{SEBISkaESk,0§k<OO}.

As each Sj is non-empty and each s € Sk has an extension sg41 € Sg41, this
proves that S # 0. =
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6 'TRUTH, VALIDITY AND ENTAILMENT

The following definitions of truth, validity and entailment round off the pre-
sentation of the semantics of L.

DEFINITION 1 (TRUTH) ¢ is true in L-model M ifds € S, Ja € A with s, alp],
where S 1s the set of states for L tn M and A = dom(M)" .

Here are some examples of first order equivalents of NTL formulas to illustrate

the definition (where = denotes NTL truth, and . the classical first order
notion of truth).

o M = B(ex :
o M = R(ex : Ax)(ex : Bzx) if M =, x3y(Ax A By A Rxy).

Az) iff M &=, dx(Ax A Br)
A

o M = R(ex : Ax)(ex : Ax) if M =, x(Ax A Rzx).
Ax)
Az)

X

o M |= R(ex : Ax)(ex : Azx) iff M =, 3z(Ax A =Rzxx).

e M = A(ex : Ax) = B(ex : Ax) if M =, Vx(Ax — Bx).
DEFINITION 2 (VALIDITY) ¢ s valid if ¢ is true in every L-model M.
Here is an example validity (with = ¢ for ‘p is valid’):

= A(ex : Br) = B(ex : Ax).

DEFINITION 3 (ENTAILMENT) ¢ entails v if the truth of v in L-model M en-
tails the truth of w;1 in L-model M.

This may sound slightly non-standard. The reason for looking at the conclusion
‘in the context of the premise’ is of course that the conclusion may contain
translations of pronouns that find an antecedent in the premise.

Here is an example entailment (with = for the entailment relation):

(P(ex : Axz) = P(ex : Bx)); (P(ex : Bx) = P(ex : Cx))
= P(ex : Ax) = P(ex : Cx).

The term language L is a dynamic variant of Hilbert and Bernays’ epsilon logic
(see [9]). The dynamic epsilon terms are meant to represent the process of
referring indefinitely to individual entities (by means of indefinite descriptions)
in natural language.

Moreover, it is an intensional version, for two formulas ¢ and 3y which are
logically equivalent (i.e., which entail one another) can give rise to different
‘epsilon choices’ in the sense that for some state s, s(ev : ¢) # s(ev : ¥). In
extensional epsilon logic (cf. Leisenring {15]) this situation cannot occur. For
our purposes the intensionality of choice is indispensable, for we want to be
able to use logically equivalent indefinite descriptions for indefinite reference to
different individuals.
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Some extra notation is useful for that. Note that according to the semantic
clauses, (L = 1) is valid. Let (ev : ¢),, abbreviate the following:

(ev: (o ((L = L);((L=1);...))))

n times

Then we can use (ex : Ax)g, (ex : Azx)y, (ex : Ax)s, and so on, to translate
different occurrences of an indefinite description in a text.

10 A beer for her, a beer for him, and an orange juice for me.

In ordering a round of drinks for three, as in (10), a repetetion of the same
indefinite description should not entail that the same glass is to be shared by

two of your friends, so the translation should use (ex : Bz)y and (ex : Bz)q,
for the two different glasses of beer.

7 AN UPDATE FORMULATION OF THE SEMANTICS

It I C 5, where S is the state set for L in some given M, let I[¢] be the set of
states given by:

{se€S|3s" €I3a € A: s, alp]|s}.

We can use this notion to define a global index elimination procedure for NTL.
An index for L is a pair (M, I), where M is a model for L and I C S,I # 0,
with S the state set for L in M.

If U is a set of indices, then define:

Ulp| = (M, I|¢]) | (M, I) € U and I[y] # 0}.

Let W be the class of all pairs (M,S), with M a model for L and S the full
state set for L in M. Then ¢ is valid iff (W |p|)o equals the class of all models
for L; here ( )o denotes the operation of taking the first projection.

Let U be the power set of the class of all indices for L. A natural information
ordering on {4 can now be given in terms of the local ordering < on states for
a given model, which we first extend to state sets, as follows:

I < J iff for all s € J there is an s’ € I with s’ < s.
Next, we set, for Uy, Uy € U
Uiy < U, iff for all (M, J) € U, thereis a I < J with (M, I) € U;.

T'his distinction between a global and a local perspective on the semantics
should be compared to a similar distinction made for dynamic modal predicate
logic, in Van Eijck and Cepparello [3]. The distinction is the key to extending
the present proposal with epistemic operators such as maybe, an extension
which i1s beyond the scope of the present paper, however.
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8 SoME EXAMPLE MEANING REPRESENTATIONS

We will now illustrate the potential of the language by a brief discussion of
examples, some of them famous from the literature.

11 Some farmer owns a donkey. He beats 1t.

Natural translation:
12 O(ex : Fx)(ey : Dy); B(ex : Fz)(ey : Dy).

This does have the expected meaning, for it is equivalent to the following first
order sentence:

13 3z3y(Fx A Dy A Oxzy N Bzy).

The advantage of the NTL version is the fact that the translation of the second
part is an increment of that of the first.

14 If a farmer owns a donkey, he beats it.

The translation of this key motivating example for Discourse Representation
Theory:

15 O(ex : Fz)(ey : Dy) = B(ex : Fz)(ey : Dy).
The first order equivalent of this:

16 VzVy((Fx A Dy A Oxy) — Bzy).

This example derives its fame from the fact that its first order translation is

so hard to get in a compositional way. The NTL version does not face such a
problem.

17 Every farmer who owns a donkey beats 1.

To treat the example it is useful to have a notation of universal terms. Let
P(...(tv:)...) be shorthand for:

(ev:p=ev:p)=>P(...(ev:¢p)...).
Then (17) gets as natural translation:
18 B(tx : Fx;0x(ey : Dy))(ey : Dy).
This is shorthand for:

(ex : Fx; Ox(ey : Dy)) = (ex : Fz; Oz (ey : Dy))

19 = B(ex : Fz;Oz(ey : Dy))(ey : Dy),

which has the same first order equivalent as (15).

20 Every farmer owns a donkey. He beats it (reqularly).
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The discourse representation literature [14]| claims that the example is ill-
formed, a nice illustration of the fact that linguistic observation, like all obser-
vation in science, is biased by theory. Unlike discourse representation theory,

which cannot handle it, we can afford to assume that this example 1s linguisti-
cally acceptable. Here is the translation:

21 O(rx: Fx)(ey : Dy); B(rz : Fx)(ey : Dy).
Its first order equivalent:
22 Vx(Fx — 3y(Dy A Ozy)) AVz(Fx — Jy(Dy N Bzy)).

If this isn’t close enough, we can relax our regime of pronoun translation which

says that pronouns are to be translated by repetition of the term translation
of their antecedent.

23 O(rx : Fx)(ey : Dy).

In fact, from the truth of (23) we get that in every setting the term (7z : F'x)

can be replaced salva veritatis by (tx : Fx; Ox(ey : Dy)). Using this as pronoun
translation we get:

24 O(tz : Fz)(ey : Dy); B(tz : Fz;Ox(ey : Dy))(ey : Dy).
The first order equivalent of (24):
25 Vz(Fx — 3y(Dy A Ozxy)) AVx(Fz — Vy((Dy A Ozy) — Bzy)).

26 Fuvery farmer owns a donkey. Some farmer beats it.

Like the previous example, this one is beyond the scope of most current seman-
tic theories. Outside of the mainstream of natural language semantics, Game
Theoretical Semantics [10] does sketch an account, however. NTL now incor-
porates this treatment in standard dynamic semantics. Here is a translation:

27 O(tz : Fz)(ey : Dy); B(ex : Fz)(ey : Dy).
Its first order equivalent:

28 Vz(Fz — 3Jy(Dy A Oxy)) A Jz(Fx A Jy(Dy A Bzy)).

Again, if this isn’t close enough, we can relax the pronoun translation regime
and observe that the truth of the first half of (27) guarantees that we can

replace the term (ex : Fz) by (ex : Fx A Ox(ey : Dy)) without changing truth
conditions. This gives the following alternative translation:

29 O(rz : Fx)(ey : Dy); B(ex : Fz;Oz(ey : Dy))(ey : Dy),
with first order equivalent:

30 Vz(Fz — 3y(Dy A Ozy)) A 3z(Fz A Jy(Dy A Oxy A Bzy)).

Of course, all first order equivalents in this section were given ad hoc. In the

next section the issue of reasoning about and in NTL will be addressed in a
more systematic way.

297



9 ASSERTION REASONING FOR NATURAL TERM LOGIC

One approach to developing a calculus for a dynamic logic is by using assertions,
in the style of Hoare logic or quantified dynamic logic. The statements from
the dynamic language to be analyzed then become modalities, and we interpret
(@)X as: there is some state s’ reachable from the current state s with s, a[p]s’
and X holds at s, and its dual [p]X as: for all states s’ reachable from the
current state s with s, al[yp]s’, X holds at s’.

Here are some axioms for an assertion calculus along these lines (we use X as

metavariable over assertion statements, and T as abbreviation of some abitrary
tautology).

Al (p15902) X « (@) {p2)X.

A2 (. = @)X = (XA [p]{p2)T).

A3(P(..(ev:¢).. )X = Iz((@)T A(P(...x... )Y X (v/(ev : ©))).
A4 [P(...(ev:¢p).. )| X «Vz({p)T — [P(...x...)|X(v/(ev : p))).
A5 (Pt,--t,)X < (Pty--t, A X).

Condition on A-5: none of the t; is of the form (ev : ).
A6 |Pt,---t,|X « (Pt;---t, — X).

Condition on A-6: none of the t; is of the form (ev : ).
Further discussion of these axioms is beyond the present scope (see Van Eijck
2] for a similar calculus for dynamic predicate logic).

Instead, we confine ourselves to illustrating their use by means of the follow-
ing example.

(O(ex : Fx)(ey : Dy) = B(ex : Fx)(ey : Dy))T
O(ex : Fx)(ey : Dy)|(B(ex : Fzx)(ey : Dy)) T
Vz({(Fz)T — [Ox(ey : Dy)|(Bx(ey : Dy))T)
Vr(Fxz — [Ox(ey : Dy)|{Bx(ey : Dy)) T)
Va(Fz — Yy((Dy) T — [Ozz](Bzy)T))

Vz(Fz — Vy(Dy — [Ozy|(Bzy)T))

Ve(Fx — Vy(Dy — (Ozy — Bzy))).

111111

10 NATURAL DEDUCTION FOR NATURAL TERM LoOGIC

A different approach to reasoning with term logic is given by the following
example rules from a natural deduction calculus with ordered premises.

Al‘f"aw
®

p; Y (ev : x/v)

A2 ——mo
Y(ev: (x A w)/v)
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Condition on A-2: ¢ should not contain occurrences of epsilon terms. An
example application of the second rule is:

Wiex : Mx); H(ex : M)
H(ex : Mx N Wx)

These rules are for purposes of illustration only. Axiom A-2 needs a more com-
plex formulation to deal with cases where the first member ¢ of the sequence
;1 contains more than one epsilon term.

Further work on natural deduction for NTL should establish a connection

with natural deduction for standard epsilon logic (see Meyer Viol [17] for a
treatment).

11 CONCLUSION AND FURTHER DIRECTIONS

We have sketched a representation for natural language meaning which treats
indefinite descriptions as terms. An obvious first extension is definite descrip-
tions, for which standard logic has a term treatment using the ¢ term operator
(see e.g. Reichenbach [20] for an illuminating discussion). Further extensions

of the representation language that seem interesting are epistemic modalities
and, in a difterent direction, plural terms.
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